骑士书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

二十来分钟后,大家锻炼完毕,回寝室稍作整顿,盥洗一番之后,就去了食堂。

由于早起运动的关系,每个人都多吃了一个馒头,精神头也好了不少。

饭后溜达了一会儿,几个人就结伴回班,上早读。

江寒端正地坐在座位上,拿出一个崭新的笔记本,开始写论文的第一稿。

先写下标题:《感知机:大脑信息存储和组织的概率模型》。

然后是摘要:“本文探讨了生物神经元的工作机制,并建立了一个简单的数学模型,以及探索了如何在机器学习中运用这个模型……通过对生物神经元的模拟,来解决线性可分的二分类问题。”

写完摘要后,又设了几个关键字,接下来就进入了正文。

第一部分是背景介绍,主要讨论生物神经元。

“要了解智能对知觉识别,泛化,回忆和思考的能力,首先我们要回答三个问题:生物系统如何感知或检测物理世界的信息?以什么形式存储或记住信息?存储或记忆中的信息如何影响识别和行为?

第一个问题属于感官生理学领域,而且人们对它已经有了可观的认识。第二和第三个问题,目前仍然只有大量的猜测,而且神经生理学提供的一些相关事实,还没有被整合成为一个可以被人们接受的理论……”

开宗明义之后,接下来,就可以详细讨论生物神经元的工作机制了。

足足用了两千来字,才写完这些罗里吧嗦的东西,最后下了结论。

“综上所述,不管什么信息被保留,都必须以某种方式,存储为特定响应的偏好,即信息包含在连接或关联中!”

接下来,进入下一环节,建立数学模型。

对于很多人来说,这是论文写作之中,最为困难的地方。

就算拿出“感知机”这种大杀器,江寒也并不担心,会被人怀疑是重生者。

除非屡见不鲜,否则谁会一碰到厉害的人,就怀疑是穿越、重生来的?

网上关于刘秀和王莽的段子,只是调侃和玩笑罢了。

但江寒仍然决定,将数学部分精简一下,尽量不涉及太高深的东西。

很多高等数学的东西,大学生学起来都挺费劲,自己一个普通高中生,凭啥能熟练运用?

除非能证明自己,的确是个不世出的天才,不然很难解释。

如果得到足够的学术点,将七维属性都加到10以上,那自己不想当天才都不可能。

可现在是起步阶段,还是稳一点的好。

“感知机”的工作逻辑很简单,本来也不是什么复杂的东西,只是表述上要稍微严谨一点。

前世刷过的那篇同名论文,大部分内容都是枯燥的论述,数学推导并不多,关于如何在计算机上实现,则基本没怎么讲。

这也不怪原作者,那个年代的计算机科学,本来就不怎么发达。

而且那篇论文的精华,也就是一个模型,一个原理。

至于编程实现,有了模型之后,那还不是Soeasy吗?

但现在是2012年,计算机技术已经取得了长足进步,足够将机器学习技术,运用于生产生活实践了。

所以,江寒将这篇论文的重点,放在了原理解析,以及如何实现上。

除了开头第一段,江寒并没有照抄原文,事实上,他也没那个本事。

那么长的论文,能记住大概思路,就相当不错了。

一个字不差背下来?江寒做不到啊!

根据自己对该技术的理解,江寒开始自由发挥。

先从最简单的情况,也就是单变量开始讨论。

“对于只含有1个输入信号xi的样本集T,我们期望找到一个线性函数y=wx+b,通过输入的数据xi和标签yi,确定其中的权重w和偏置b,其中权重w控制输入信号的重要性,而偏置b可调整神经元被激活的难易程度……”

江寒越写越顺,下笔如飞。

“……

我们定义损失函数如下:L(w,b)=?(1||w||)∑yi(w?xi+b),根据预设的学习率η,不断调整权重w和偏置b,直到损失函数到达极小点,即可得到可用的函数模型。

综上所述,学习算法如下:

首先选定训练数据集T=(x1,y1),(x2,y2),...,(xN,yN),yi∈{?1,+1}并指定一个学习率η(0<η<1);

1、任意选定权重w和偏置b;

2、读入数据点(xi,yi);

3、判断该数据点是否为误分类点,如果yi(w?xi+b)≤0则更新w=w+ηyixi;b=b+ηyi;

4、重复进行2、3步,直到没有误分类点。

此时,我们就获得了最佳的w和b,把它们代入y=wx+b,就得到了一个数学模型。”

感知机的学习过程,有个非常形象的比喻。

假设在一个棋盘上,有一堆黑子,和一堆白子,它们不相混合。

下面,拿一根细棍放上去。

我们希望这根棍子,能恰好将黑子和白子分开,棍子的一边全是黑子,另一边全是白子。

先把棍子随机扔到棋盘上,如果恰好将黑子和白子分开了,那就皆大欢喜,否则的话,就平移和调整棍子的角度,直到所有白子和黑子恰好分开……

那根棍子就是感知机,而挪动棍子的过程,就是感知机在学习。

棍子的角度和平移量,就是要寻找的参数w和b,也就是直线(棍子)在平面直角坐标系(棋盘)里的函数解析式。

瞧,够通俗易懂吧?

可惜写论文就不能这么写了。

感知机是人工神经网络的雏形,其中有个关键概念,叫激活函数,它决定了一个神经元是否有输出。

江寒在这里,用一个阶跃函数sign(x)作为激活函数,其定义为:x<0时函数取值-1;x≥0时函数值为1。

只要将sign换成sigmoid或者其他非线性函数,就是真正的单层前馈神经网络了。

但江寒并没有着急将sign之外的函数抛出去。

在第一篇论文里,最重要的是提出概念,其他东西完全可以在下一篇论文中再讨论。

能多水几篇,岂不更加美滋滋?

搞定了输入空间是1维的情况,接下来,就可以扩展到N维。

“对于一般情况,当有n个输入信号时,假设输入空间是x∈Rn,输出空间是y∈{+1,-1}。输入x∈X表示实例的特征向量,对应于输入空间的点;输出y属于Y表示实例的类别。

由输入空间到输出空间的如下函数:Ψ(x)=rsign(w1x1+w2x2+……+wnxn+b)=rsign(wTx+b),就可以称之为感知机,其中w∈Rn,b∈R为感知机算法的参数……”

在讨论完n个输入信号的情况后,江寒指出:

“模型建立之后,经过训练,就可以得到一组权重和偏置,这些参数确定了一个分离超平面(定义为n维空间上的一个n-1维子空间),此超平面可以将训练集中的数据,完全正确地分成两份,一份为正,一份为负(或者0,可以自己定义)。”

取得了模型的参数后,就可以把测试数据放进去,根据模型函数运算的结果,就能对数据进行分类。

感知器用处很广泛,几乎所有二分类问题,都可以用它来试一试。

当然,必须是线性可分的问题,线性不可分的问题,是不能用单层感知器解决的。

例如年龄和有没有生活经验,就不存在线性关系;长得帅不帅和学习好不好,也没有线性关系……

关于如何高效地判断数据是否线性可分,江寒还真研究过,只是这个题目比较大,三言两语说不清楚。

嗯……好像又能多水一篇或几篇SCI?

骑士书屋推荐阅读:跟班:是嫂子先动的手!匹夫驾到恶毒女配是神医穿到年代当姑奶奶都市:多子多福,女神孕气爆炸重生1989:缔造华夏科技帝国重生:红色仕途穿到年代后全家都是极品赵平安齐天娇快穿反派boss作死日常让你写济世,你主角卖印度神油?赘婿逆袭之龙耀天下综视:家妻孟钰,我带孟德海狂飙101次枕边书热吻365式:靳少,玩够没纵横股海,原来这才叫炒股团宠冲喜小农女苏晚顾远重生之我是BOSS夫人被迫觅王侯校草的专宠:池少的1号甜心都市逆天邪医暴力军嫂有点甜八卦太极,纵横大夏女总裁的嚣张保镖总裁与清冷美人老婆穿梭:电影世界女神有点多我以阴阳铸神我天!他仙王重生,你可怜他?文娱:一首少年说,我被官方盛赞一口天价炒饭,老唐当场拜师极品小老师真少爷重生不舔了,全家大破防美色如刃:盲少高调宠叶君临小说旁门左道吾成仙无限杀戮!高考落榜我于人间屠神苏晚顾远奉命下山找我的六个师姐重生2007:我自带筹码最强少帅,开局被穷养都市改造人官途:救了领导后我扶摇直上四合院:我何雨柱,送贾张氏坐牢异化全球:我的专属空间秘境嫡华婚后独占爱妻从明星野外生存秀开始你好,少将大人陛下臣妾要宫斗满城玉笛声
骑士书屋搜藏榜:[快穿]小受总是在死娱乐圈火爆天王科技供应商重生:从叫错女同桌名字开始让你上大学,你偷偷混成首富薄先生的专属影后又美又娇带着修为回地球,全家随我飞升了我的女孩在灯火阑珊处医路人生:一位村医的奋斗之路重生嫡女归来最强赘婿霸宠甜甜圈:夜少,别乱撩我真不想当大明星地球online我开启世界大战港综:曹达华在我身边卧底特种兵:林老六竟然是狼牙总教官我家夫人今天听话了吗陈西峰商路笔记农门长嫂有空间抓鬼小农民农家俏寡妇:给五个孩子当娘都市极品保镖奶爸的超级农场穿书九零,大佬的炮灰前妻觉醒了穿成女配后我和权臣成亲了滑稽主播娱乐:让你介绍自己,你介绍家底重生之事事顺意限量婚宠:报告军长,我有了神界红包群撩妻1001式:席少,深度爱!影帝请你不要再吸我了喵公主殿下太妖孽重生之并蒂金花BOSS来袭:娇妻花式溺宠逆风三十岁重生高中校园:男神,撩一撩这个道士不靠谱村色撩人明朝大纨绔我向斐少撒个娇娇妻送上门:楚少请签收高中退学一年后,我被大学特招!修仙浪都市宝可梦供应商一妃难求:冷傲帝王不经撩农媳诡异?感觉弗如系统校草的专宠:池少的1号甜心万古邪帝
骑士书屋最新小说:高冷校花竟是我的软萌小女友?都市软饭:八个顶尖女神疯狂倒贴御兽:看着图鉴养御兽官场智斗仕途巅峰:从女书记的秘书开始重生离婚之日:我的计划震撼全球都断绝关系了还求我回家做什么重生之美女太多了,怎么办卡牌:我不是弃神都市太子爷成了天命大反派开局背靠蓝星?一拳一戟镇万族重生:从教父到美利坚话事人囚笼里的休者诡异降临:这个人类超级有钱!为妻子复仇的丈夫炒股炒成大股东?被套就举牌?那一刻,蝴蝶飞飞辅助?抱歉,我有禁字诀!男生女相,你们都给我装了定位?上四休三!员工比我还怕公司破产我梦见了高考答案神秘法术之缘穿行诸天,证就至高蜜色诱人两界穿梭之崛起维零小说诗词两手抓,漂亮女友带回家他们都叫我大佬都市神豪之纵横花都斩神:今天也在打工魔尊是我哥辣手狂花时空祭司断绝关系后,你们悔哭也没用开局神豪系统,我的资产遍布全球回档2006,我真不懂炒股啊高武:投资命格,万倍返还闹呢?让你契约亡灵,你契约将臣万界游戏:英雄联盟系统梦境入侵:我的梦境形象是少女!从F到SSS,我的器灵进阶快亿点点怎么了重返82,开局迎娶厂花初恋妙手神医:从融合AI开始超能大老板高武:以霸王之名,横压一切!我有九千亿亩黑土地我在修仙管理局的日子直播:修仙归来破界新生资源万倍返还,众女成尊我成神