骑士书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

二十来分钟后,大家锻炼完毕,回寝室稍作整顿,盥洗一番之后,就去了食堂。

由于早起运动的关系,每个人都多吃了一个馒头,精神头也好了不少。

饭后溜达了一会儿,几个人就结伴回班,上早读。

江寒端正地坐在座位上,拿出一个崭新的笔记本,开始写论文的第一稿。

先写下标题:《感知机:大脑信息存储和组织的概率模型》。

然后是摘要:“本文探讨了生物神经元的工作机制,并建立了一个简单的数学模型,以及探索了如何在机器学习中运用这个模型……通过对生物神经元的模拟,来解决线性可分的二分类问题。”

写完摘要后,又设了几个关键字,接下来就进入了正文。

第一部分是背景介绍,主要讨论生物神经元。

“要了解智能对知觉识别,泛化,回忆和思考的能力,首先我们要回答三个问题:生物系统如何感知或检测物理世界的信息?以什么形式存储或记住信息?存储或记忆中的信息如何影响识别和行为?

第一个问题属于感官生理学领域,而且人们对它已经有了可观的认识。第二和第三个问题,目前仍然只有大量的猜测,而且神经生理学提供的一些相关事实,还没有被整合成为一个可以被人们接受的理论……”

开宗明义之后,接下来,就可以详细讨论生物神经元的工作机制了。

足足用了两千来字,才写完这些罗里吧嗦的东西,最后下了结论。

“综上所述,不管什么信息被保留,都必须以某种方式,存储为特定响应的偏好,即信息包含在连接或关联中!”

接下来,进入下一环节,建立数学模型。

对于很多人来说,这是论文写作之中,最为困难的地方。

就算拿出“感知机”这种大杀器,江寒也并不担心,会被人怀疑是重生者。

除非屡见不鲜,否则谁会一碰到厉害的人,就怀疑是穿越、重生来的?

网上关于刘秀和王莽的段子,只是调侃和玩笑罢了。

但江寒仍然决定,将数学部分精简一下,尽量不涉及太高深的东西。

很多高等数学的东西,大学生学起来都挺费劲,自己一个普通高中生,凭啥能熟练运用?

除非能证明自己,的确是个不世出的天才,不然很难解释。

如果得到足够的学术点,将七维属性都加到10以上,那自己不想当天才都不可能。

可现在是起步阶段,还是稳一点的好。

“感知机”的工作逻辑很简单,本来也不是什么复杂的东西,只是表述上要稍微严谨一点。

前世刷过的那篇同名论文,大部分内容都是枯燥的论述,数学推导并不多,关于如何在计算机上实现,则基本没怎么讲。

这也不怪原作者,那个年代的计算机科学,本来就不怎么发达。

而且那篇论文的精华,也就是一个模型,一个原理。

至于编程实现,有了模型之后,那还不是Soeasy吗?

但现在是2012年,计算机技术已经取得了长足进步,足够将机器学习技术,运用于生产生活实践了。

所以,江寒将这篇论文的重点,放在了原理解析,以及如何实现上。

除了开头第一段,江寒并没有照抄原文,事实上,他也没那个本事。

那么长的论文,能记住大概思路,就相当不错了。

一个字不差背下来?江寒做不到啊!

根据自己对该技术的理解,江寒开始自由发挥。

先从最简单的情况,也就是单变量开始讨论。

“对于只含有1个输入信号xi的样本集T,我们期望找到一个线性函数y=wx+b,通过输入的数据xi和标签yi,确定其中的权重w和偏置b,其中权重w控制输入信号的重要性,而偏置b可调整神经元被激活的难易程度……”

江寒越写越顺,下笔如飞。

“……

我们定义损失函数如下:L(w,b)=?(1||w||)∑yi(w?xi+b),根据预设的学习率η,不断调整权重w和偏置b,直到损失函数到达极小点,即可得到可用的函数模型。

综上所述,学习算法如下:

首先选定训练数据集T=(x1,y1),(x2,y2),...,(xN,yN),yi∈{?1,+1}并指定一个学习率η(0<η<1);

1、任意选定权重w和偏置b;

2、读入数据点(xi,yi);

3、判断该数据点是否为误分类点,如果yi(w?xi+b)≤0则更新w=w+ηyixi;b=b+ηyi;

4、重复进行2、3步,直到没有误分类点。

此时,我们就获得了最佳的w和b,把它们代入y=wx+b,就得到了一个数学模型。”

感知机的学习过程,有个非常形象的比喻。

假设在一个棋盘上,有一堆黑子,和一堆白子,它们不相混合。

下面,拿一根细棍放上去。

我们希望这根棍子,能恰好将黑子和白子分开,棍子的一边全是黑子,另一边全是白子。

先把棍子随机扔到棋盘上,如果恰好将黑子和白子分开了,那就皆大欢喜,否则的话,就平移和调整棍子的角度,直到所有白子和黑子恰好分开……

那根棍子就是感知机,而挪动棍子的过程,就是感知机在学习。

棍子的角度和平移量,就是要寻找的参数w和b,也就是直线(棍子)在平面直角坐标系(棋盘)里的函数解析式。

瞧,够通俗易懂吧?

可惜写论文就不能这么写了。

感知机是人工神经网络的雏形,其中有个关键概念,叫激活函数,它决定了一个神经元是否有输出。

江寒在这里,用一个阶跃函数sign(x)作为激活函数,其定义为:x<0时函数取值-1;x≥0时函数值为1。

只要将sign换成sigmoid或者其他非线性函数,就是真正的单层前馈神经网络了。

但江寒并没有着急将sign之外的函数抛出去。

在第一篇论文里,最重要的是提出概念,其他东西完全可以在下一篇论文中再讨论。

能多水几篇,岂不更加美滋滋?

搞定了输入空间是1维的情况,接下来,就可以扩展到N维。

“对于一般情况,当有n个输入信号时,假设输入空间是x∈Rn,输出空间是y∈{+1,-1}。输入x∈X表示实例的特征向量,对应于输入空间的点;输出y属于Y表示实例的类别。

由输入空间到输出空间的如下函数:Ψ(x)=rsign(w1x1+w2x2+……+wnxn+b)=rsign(wTx+b),就可以称之为感知机,其中w∈Rn,b∈R为感知机算法的参数……”

在讨论完n个输入信号的情况后,江寒指出:

“模型建立之后,经过训练,就可以得到一组权重和偏置,这些参数确定了一个分离超平面(定义为n维空间上的一个n-1维子空间),此超平面可以将训练集中的数据,完全正确地分成两份,一份为正,一份为负(或者0,可以自己定义)。”

取得了模型的参数后,就可以把测试数据放进去,根据模型函数运算的结果,就能对数据进行分类。

感知器用处很广泛,几乎所有二分类问题,都可以用它来试一试。

当然,必须是线性可分的问题,线性不可分的问题,是不能用单层感知器解决的。

例如年龄和有没有生活经验,就不存在线性关系;长得帅不帅和学习好不好,也没有线性关系……

关于如何高效地判断数据是否线性可分,江寒还真研究过,只是这个题目比较大,三言两语说不清楚。

嗯……好像又能多水一篇或几篇SCI?

骑士书屋推荐阅读:四合院:我傻柱,开局迎娶冉秋叶收手吧神豪!别再让主播空降了家人们谁懂,这海军怎么是个混混异境逆袭:我命由我,不由天顶流开局,制霸娱乐圈富豪从西班牙开始退圈考回冰城,引来一堆小土豆清冷校花?不熟,但她喊我少爷!娱乐:说好假结婚杨老板你认真了重生之纯真年代阡陌中的荒灵带着搬家石游三界祸水之妻高武:我喝血就能变强我可是反派,主角妈妈注意点带着空间穿八零,领着家人奔小康开店第一天,美妇堵上门反派:不当舔狗后女主怪我变心?让你代管殡仪馆,你竟让地府降临国运:从蟒蛇进化成血脉金龙宗门仅剩的独苗谍战:我黄埔高材生,去底层潜伏走爸临的路,让霸凌者无路可走拒绝舔狗,带校花老婆修仙人在警局破大案,各色美女迷恋我提前登录!重生的我怎么输?双穿:我是地球OL内测玩家我当军户媳妇的那些年铁锹配大锅,一锅炒菜七万多都市小保安的蜕变四合院之达则兼济天下灵气复苏,我十年成帝,杀光异族无尽末日内的干涉者灵气复苏:我能召唤铠甲绝代天师:人前显圣被刘天仙曝光我在神学的世界写三体太空大陆娱乐:京圈少爷的我成顶流了?变身少女拯救世界?我只想摆烂!我领悟万千剑道,一剑屠神!神豪从关注女主播开始特级保安禁咒?快加油,你肯定能破我防御最强欺骗系统,自爆我就是修仙者杀到界海彼岸,成就万古帝尊怒怼多国名场面,我成护国狂魔重生:我的系统叫吸溜仙山灵水话青梅末日:我修仙拽一点怎么了
骑士书屋搜藏榜:[快穿]小受总是在死娱乐圈火爆天王战神赘婿:黄海平科技供应商重生:从叫错女同桌名字开始让你上大学,你偷偷混成首富薄先生的专属影后又美又娇带着修为回地球,全家随我飞升了我的女孩在灯火阑珊处医路人生:一位村医的奋斗之路重生嫡女归来最强赘婿霸宠甜甜圈:夜少,别乱撩我真不想当大明星地球online我开启世界大战港综:曹达华在我身边卧底特种兵:林老六竟然是狼牙总教官我家夫人今天听话了吗陈西峰商路笔记农门长嫂有空间抓鬼小农民农家俏寡妇:给五个孩子当娘都市极品保镖奶爸的超级农场穿书九零,大佬的炮灰前妻觉醒了穿成女配后我和权臣成亲了滑稽主播风雨兼程的逆袭路娱乐:让你介绍自己,你介绍家底重生之事事顺意限量婚宠:报告军长,我有了真千金断亲随军,禁欲大佬日日宠神界红包群撩妻1001式:席少,深度爱!影帝请你不要再吸我了喵公主殿下太妖孽黑道往事:从劳改犯到黑道传奇!重生之并蒂金花BOSS来袭:娇妻花式溺宠逆风三十岁重生高中校园:男神,撩一撩这个道士不靠谱村色撩人明朝大纨绔我向斐少撒个娇娇妻送上门:楚少请签收高中退学一年后,我被大学特招!修仙浪都市宝可梦供应商重生后,我娶了未来的县委书记
骑士书屋最新小说:后悔?离婚后我舔别人,你选的嘛剑斩魔影:都市修真破案传说赤煞魔法戒终有幸奇门脑洞重回90,房子门面买买买买买买被迫虐女,我也很心痛啊丧尸?不好意思国道上撞大运了开局娶了首富的白月光重回80:从赶海开始狂飙重生穿越到柬埔寨天医狂龙:下山当天,和小姨子订婚!重生1986助力国家崛起新兵连,我被直招进特种部队饥荒年代:我靠空间发家致富!三年付出,最后一次背弃后我选择放手海钓失事后,我被富家千金赖上了重生65,从打猎带知情姐妹天天吃鸡肉我有一张小丑牌重生破烂王,干到世界500强各位,欢迎来到新世界时间迷局里的末日救赎秦河畔,她说不想官配打工岁月:隐藏在城市角落的秘密富婆别喂了,我真的不吃软饭吾乃剑圣转世神陨入世,废土新生重生救赎,狩猎致富宠爱小娇妻重生86:鉴宝发家,我把妻女宠上天四合院:我,娄小娥的靠山港片:黑丝小犹太,力挺方洁霞国士无双之炁贯八荒重生千禧年:官场之路从片警开始权力医途他于深渊孤寂,她以纯白相偎祁同伟:老婆陆亦可,侯亮平醋了神珠缘亮剑:李云龙有九营九连九排四合院:从广播员开始整顿禽兽全村啃窝头,我一天赚一万开局冰山美女总裁怀了我的孩子外卖员觉醒之路重生特种兵,我成了战友的心尖宠重生后边造国货边炒股成全球首富高武:反方向的钟,高冷校花直呼不要吻她闺蜜,冰山妻人设崩了哭唧唧练武太难,系统给我加点!为了英雄老婆,成为邪恶大反派重生75,换亲后,我靠打猎养活全家