骑士书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!
骑士书屋 >  离语 >   第301章 密码

基于聚类的离散化假设我们有一个包含1000个房屋的价格数据的数据集,我们想将价格分成5个簇,以下是离散化方法:首先,随机分配5个中心点。根据每个房屋的价格和这5个中心点的距离,将每个房屋分入距离最近的中心点对应的簇中。重新计算每个簇的中心点,以中心点的坐标作为新的中心点。重复步骤2和步骤3,直到中心点的移动小于某个阈值或达到最大迭代次数。最终得到的5个簇即为我们需要的离散化结果。自适应离散化假设我们有一个包含个商品销售量数据的数据集,我们想将销售量离散化成n个区间,以下是离散化方法:先将所有商品销售量根据大小排序。初始时,将数据集分成n个区间,每个区间保持相等的数据数量。计算每个区间的范围(最小值和最大值),并计算相邻区间的范围的中点,这些中点作为新的分割点。根据新的分割点重新划分区间,如果新的区间与原来的区间相同,则算法停止。否则,重复步骤3和步骤4。最终得到的n个区间即为我们需要的离散化结果。卷积核输出形状卷积神经网络中的卷积层的输出维度计算,可以通过以下公式得出:输出的高度 = (输入的高度 - 卷积核的高度 + 2 * padding) \/ 步长 + 1输出的宽度 = (输入的宽度 - 卷积核的宽度 + 2 * padding) \/ 步长 + 1输出的深度 = 卷积核的数量这里,padding是指在输入数据周围填充的0的行数或列数(在计算输出大小时有助于保持空间尺寸不变),步长是指卷积核移动的步数。输出的深度直接取决于我们使用的卷积核的数量。输入数据大小为32 x 32大小单通道图片,在c1卷积层使用6个大小为5 x 5的卷识核进行卷积,padding = 0,步长为1通过6个大小为5 x 5的卷识核之后的输出是多大尺寸的,怎么用公式计算给定:输入的高度 h = 32;输入的宽度 w = 32;卷积核的高度 Kh = 5;卷积核的宽度 Kw = 5;卷积核的数量 K = 6;步长 S = 1;padding p = 0根据上述公式,我们可以计算出卷积后的输出尺寸:输出的高度 = (h - Kh + 2p) \/ S + 1 = (32 - 5 + 2*0) \/ 1 + 1 = 28输出的宽度 = (w - Kw + 2p) \/ S + 1 = (32 - 5 + 2*0) \/ 1 + 1 = 28输出的深度 = K = 6所以,通过6个大小为5x5的卷积核后的输出尺寸为 28x28x6。

留出法(holdout method):基本思想:将原始数据集划分为训练集和测试集两部分,其中训练集用于模型训练,而测试集则用于评估模型的性能。实施步骤:根据比例或固定的样本数量,随机选择一部分数据作为训练集,剩余部分用作测试集。优点:简单快速;适用于大规模数据集。缺点:可能由于训练集和测试集的不同导致结果的方差较高;对于小样本数据集,留出的测试集可能不够代表性。2交叉验证法(cross-Validation):基本思想:将原始数据集划分为K个大小相等的子集(折),其中K-1个子集用于训练模型,剩下的1个子集用于测试模型,这个过程轮流进行K次,最后将K次实验的结果综合得到最终的评估结果。实施步骤:将数据集随机划分为K个子集,依次选择每个子集作为验证集,其余子集作为训练集,训练模型并评估性能。重复这个过程K次,取K次实验的平均值作为模型的性能指标。优点:更充分利用了数据;可以减小因样本划分不同而引起的方差。缺点:增加了计算开销;在某些情况下,对于特定划分方式可能导致估计偏差。3自助采样法(bootstrapping):基本思想:使用自助法从原始数据集中有放回地进行有偏复制采样,得到一个与原始数据集大小相等的采样集,再利用采样集进行模型训练和测试。实施步骤:从原始数据集中有放回地抽取样本,形成一个新的采样集,然后使用采样集进行模型训练和测试。优点:适用于小样本数据集,可以提供更多信息;避免了留出法和交叉验证法中由于划分过程引入的变化。缺点:采样集中约有36.8%的样本未被采到,这些未被采到样本也会对模型性能的评估产生影响;引入了自助抽样的随机性。拓展:选择何种数据集划分方法应根据以下因素进行综合考虑:1数据集大小:当数据集较大时,留出法能够提供足够的训练样本和测试样本,而且计算开销相对较小。当数据集较小时,交叉验证法和自助采样法能更好地利用数据。

2计算资源和时间限制:交叉验证需要多次训练模型并评估性能,所以会增加计算开销;自助采样法则需要从原始数据集中进行有放回的采样,可能导致计算成本上升。如果计算资源和时间有限,留出法可能是更可行的选择。3数据集特点:如果数据集具有一定的时序性,建议使用留出法或时间窗口交叉验证,确保训练集和测试集在时间上是连续的。如果数据集中存在明显的类别不平衡问题,可以考虑使用分层抽样的交叉验证来保持类别比例的一致性。4评估结果稳定性要求:交叉验证可以提供多个实验的平均结果,从而减少由于随机划分带来的方差。如果对评估结果的稳定性要求较高,交叉验证是一个不错的选择。总而言之,没有一种数据集划分方法适用于所有情况。选择合适的方法应根据具体问题的需求、数据集的大小以及可用的资源和时间来进行综合考虑,并在实践中进行实验比较以找到最佳的划分方式。2、请列举模型效果评估中准确性、稳定性和可解释性的指标。1准确性:准确率(Accuracy):预测正确的样本数量与总样本数量的比例。精确率(precision):预测为正类的样本中,真实为正类的比例。召回率(Recall):真实为正类的样本中,被模型预测为正类的比例。F1值(F1-Score):综合考虑了精确率和召回率的调和平均,适用于评价二分类模型的性能。2稳定性:方差(Variance):指模型在不同数据集上性能的波动程度,方差越大说明模型的稳定性越低。交叉验证(cross Validation):通过将数据集划分为多个子集,在每个子集上训练和评估模型,然后对结果进行平均,可以提供模型性能的稳定估计。3可解释性:特征重要性(Feature Importance):用于衡量特征对模型预测结果的贡献程度,常用的方法包括基于树模型的特征重要性(如Gini Importance和permutation Importance)以及线性模型的系数。4可视化(Visualization):通过可视化模型的结构、权重或决策边界等,帮助解释模型的预测过程和影响因素。5 ShAp值(Shapley Additive explanations):一种用于解释特征对预测结果的贡献度的方法,提供了每个特征对最终预测结果的影响大小。这些指标能够在评估模型效果时提供关于准确性、稳定性和可解释性的信息,但具体选择哪些指标要根据具体任务和需求进行综合考虑。

骑士书屋推荐阅读:直播算命:大哥,你上错坟十年了掀桌!炮灰女配飒翻七零谍战:红色特工之代号不死鸟穿成年代文里的团宠姑奶奶玄学大佬下山拯救哥哥们重生年代团宠小福娃穿书年代:我妈她是玄学大佬胎穿年代,成香江第一名媛年代快穿:女配的肆意人生七零女配靠弹幕走上人生巅峰穿进年代文,我搜刮极品所有财产七零凝脂美人,闪婚随军当团宠七零团宠嫁兵哥,娇弱知青是装的被读心之后,假千金成团宠了怎么办?穿成修仙文大魔头的亲妹海贼,我,祸世妖狐!穿越大唐之我在唐朝建设现代化直播算命:姐妹你八字很淦末世大佬穿八零,主角团胆战心惊我把诡异变萝莉穿书之在逃公主带着系统去修仙末世大佬在七零乘风破浪七零军婚:高冷军官的心上娇我一短命女配,长生亿点怎么了?魂穿重生重燃江山美人梦直播算命:惊!你吃了亲家的骨灰穿成年代文舔狗,女修罢工了一觉醒来,我被虎鲸暴打!爆哭夫君要我补偿千年的孤枕难眠重生八零:离婚后被军少宠上天婚不由己:陆先生先动心快穿:小炮灰要怎么攻略男主快穿:炮灰她努力上进不掺和剧情军爷糙,军爷傲,惹上军爷跑不掉八零乖崽,炮灰一家读我心后赢麻爽!假千金觉醒对象是年代文大佬影视穿越人生宠妾灭妻忘恩负义?全都给她死!假千金被读心后,真千金疯狂贴贴梦心境穿书七零,娇气知青下乡盘大佬深情不问出处,北极熊的爱你记住穿书七零空间来修仙七零:科研大佬霸道爱极品反派被读心,带领全家躺赢哆啦a梦:高中的大雄诸天从小阴间开始原神:大恶龙作死系统爱一场要命!禁欲王爷太撩人!
骑士书屋搜藏榜:怎么办?穿成修仙文大魔头的亲妹我带着八卦去异界最强乡村带着物资在古代逃荒十九年只要系统出得起,996也干到底总裁又在套路少夫人绝世医妃:腹黑王爷爱上我别人都穿成师尊,我穿成那个孽徒网球:开局绑定龙马,倍增返还从蒙德开始的格斗进化一条龙的诸天之路玲珑醉红尘从天而降的桃小夭被迟总捡回了家娇知青嫁给修仙回来的糙汉被宠爆乐队少女幻物语公主风云录新婚夜被抄家?医妃搬空全京城综影视:万界寻心大厦闹鬼,你还让我去做卧底保安开局无敌:我是黑暗迪迦恐怖逃杀,综漫能力让我碾压一切豪门枭宠:重生狂妻帅炸了被宰九次后我成了女主的劝分闺蜜离婚后,她携崽炸了总裁办公室快穿:宿主又狗又无情做卡牌,我可是你祖宗!被柳如烟渣后,我穿越了一人豪门军少密爱成瘾厉总别虐了,太太她要订婚了星际军区的日常生活重生:朕的二嫁皇妃四合院:在四合院虐禽的日子煞气罡然叹卿意抢来的太太又乖又甜逃荒前,嫁给纨绔!谍战之一个骑手在满洲被领养了,但我是作为宠物被养我就是恶毒女配,怎么了斗罗之我可以偷取魂力我,刚失恋,穿进盗笔了开局扮演瘦长诡影,我逐渐无敌斗罗我的云中蝶很无敌斗罗:开局赠送唐三葵花宝典帅仙阿龙传全球高武之杀生得道快穿生子,绝色女主好孕娇宠现实世界走出的宗师黑科技小师妹与炮灰宗门
骑士书屋最新小说:玄学少女在异世大陆捡漏花开无言综漫:有恶灵也是轻松日常闪婚渣男小叔叔,温小姐被宠哭了说了不要随便捡一条咸鱼的我,如何饲养疯批太子穿成落魄士族,还好我有签到系统都市恋曲:逐梦与爱情同行穿越世界获得红颜系统将军嫌弃,我退婚买废太子生崽崽哈利波特与东方魔法师我在海贼世界当判官花自飘零兽世娇雌金手指,五个兽夫狠狠宠古今交织:冷艳女主的豪门军婚打工皇帝逆袭人生穿书后,我实现了上辈子的愿望网球:我的球馆教练来自综漫万界异世五洲行黑刀斩鬼人游戏来的爱情快穿:我在反派身边给主角当助攻我走后才说我是真爱,你哭也没用斩神:代理酒剑仙,开局一剑开天穿越之闺蜜三人打穿修仙界山村留守妇女们的秘密情事路甲的求生之路共逐春风是拖油瓶也是青梅竹马GO怪谈校园神秘异事薄白手起家,怎料自己就是富婆修仙之风云爱恋总裁的柔情陷阱领证五年认错老公后我负全责侯府庶女是隐藏大佬追仙行跌落泥尘何雨柱的穿越生活公公的第二春穿越六十年代开启我的修仙之路清穿:成为太子妃后被娇宠了诸天订单:客串角色就能获得奖励四合院傻柱的逆行人生三眼齐生一念渡心劫重生之撕渣手册夜间撞女鬼?我反手把它塞进麻袋从乱葬岗开始我的重生之旅火影之鸣人新传丝路奇遇:小商人的大唐冒险