文本挖掘与分析名词解释10道题,英文缩写,例如RNN,LdA,mLp,FNN模型和算法的理解(word2vec等模型原理),损失函数,语言模型的概念,代码类:根据公式\/输出写源代码交叉熵损失设置参数解决数据不平衡1自然语言处理自然语言处理研究实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理技 术发展经历了基于规则的方法、基于统计学习的方法和基于深度学习的方法三个阶段。自然语言处理 由浅入深的四个层面分别是形式、语义、推理和语用,当前正处于由语义向推理的发展阶段。2文本分类文本分类是机器对文本按照一定的分类体系自动标注类别的过程, 也是自然语言处理最早的应用领域之一。你能想到哪些自动文本分类 应用? 垃圾邮件分类,新闻类型分类,...情感分析情感分析也可以认为是文本分类的一个子类型。情感分析往往应 用于电商的用户评价分析,微博等自媒体的用户留言倾向分析,或者 公共事件的舆情分析。3信息抽取信息抽取是采用机器学习算法从非结构化文本中自动抽取出用户感兴趣的内容,并进 行 结构化处理。例如命名实体识别、实体关系抽取、事件抽取、因果关系抽取文本生成包括自动文章撰写、自动摘要生成等内容4信息检索信息检索指信息按一定的方式组织起来,并根据用户的需要找出有关的信息的过程和技术。搜 索引擎是当前主流的信息检索方式,从最初的关键词匹配算法到如今的语义检索技术, 用户已经能够随心所欲的检索自 己所需的信息。
中心度:在图论和网络分析中,中心度用来衡量节点在图中的重要 性,中心度并不是节点本身带有的属性,而是一种结构属性, 是在图或网络结构下节点才具有的属性。中心度可用来解决不同领域的问题: 例如在社交网络中寻找影响力最大的用户,在互联网或城市网络中寻找 关键的基础设施,以及在疾病网络中发现超级传播者度中心度:指节点与其他节点相连边的数量,即通过节点的邻居 数目(局部信息)来计算节点度重要程度。 基本思想:
北门的,奖励500金,但没有人去尝试。根据期望理论,这是由于:(c)
A、500金的效价太低
b、居民对完成要求的期望很低
居民对得到报酬的期望很低宾
枪打出头鸟,大家都不敢尝试
当一位30~40岁的科研工作者显示出卓越的技术才能时,作为该科研人员的领导对他的最有效的激励应该是:(b)
高额奖金
配备最好的研究条件
提职
精神奖励(如评为劳模)
在社会生活中,人们对各种客观存在的文化用品的需要,称为:(d)
A、社会性需要
b、自然性需要
c、精神需要
d、物质需要
在人的各种需要中,最高层次的需要是:(A)
A、自我实现需要
b、安全需要
c、尊重需要
d、社会需要