虽然其它信息流和因果信息度量方法的应用将为我们讨论的问题提供更多见解,但这里我们主要会关注传递熵的信息处理的方法。并在后面为所选的传递熵提供了一个说明性的示例,驱动来自大量不同领域传递熵的应用,如神经科学和金融(bossomaier et al. 2016),包括互信息及传递熵都已被用于研究二维伊辛模型不同阶段的信息流(barnett et al. 2013)。Lizier 等(2008b)用它来研究元胞自动机,并表明质点(particles,定义为滑翔机(gliders)和域壁(domain walls))是这类模型中传递信息的主要手段。
wang 等(2012)研究了人工粒子群体运动模拟中的信息级联,表明它们以波浪的形式在群中荡漾。在模拟中使用传递熵框架研究的其它集群行为还包括酵母细胞周期的动态调节网络(Kim et al. 2015;walker et al. 2016)(见下文讨论)和多代理系统中的共识实现(Valentini et al 2018)。此外在动物集群行为研究中也得到了一些应用。例如,研究成对和小群的斑马鱼的信息传递,为识别领导关系提供了有用的工具(butail et al. 2014,2016;mwaffo et al. 2017),以及鱼类U型转弯过程中的信息和错误信息交互作用(crosato et al. 2018);还有研究蝙蝠(orange
Abaid 2015)或蚂蚁和白蚁的引导者-追随者关系(Valentini et al. 2020),粘液霉中的信息传递(Ray et al. 2019),以及成对鱼群之间的捕食者-猎物关系(hu et al. 2015)。
既然不同度量指标如此宽泛且还都具有广泛适用性,对在不同系统中应用信息理论见解的最佳方法、甚至对这种方法是否可能,目前都尚无明确的共识,每种度量都提供了一种动力系统因果与相关结构在较低维度上的投影,因此并不能捕捉系统全貌。而将不同度量方法结合在一起,可以提供对生命和非生命系统结构更深的洞察,进而可以利用这些度量方法采取下一步行动,再发展出新的理论和度量方法,以了解生命究竟是什么。
例子:行为相似但机制不同集群的信息架构
集群系统经常面临需要做出集体层面共同协商的决定。这种决定是由大量的代理体作出的,往往遵循简单的互动机制:收集、传递和处理集体决定所需要的信息。群体决策过程中的信息传递最重要:没有信息的交流,集体之间就无法达成共识。尽管我们目前对群体决策机制有很好地理解,但个体规则在群体决策信息传递中的贡献却还鲜为人知。
为了解决这个问题,更好理解不同决策机制的信息状况,我们研究了源自同一决策问题(Valentini et et al. 2018)信息传递应用情况下的不同决策策略:从两个选项中价值较高的一个达成共识(Valentini et al. 2017)。我们考虑了两种决策机制,多数决规则(majority-rule)和选举模型(voter model),均通过集体中100个代理人产生意见。在我们的模型中(Valentini et al. 2016),代理人总是偏好两个选择中的一个。设其中地点 A 的质量为 1,地点 b ∈{0.5,0.9}。代理人会在两个阶段交替行动:在探索期前往与当前意见相符的环境区域,对该选项质量进行采样;另外是根据估测的传播质量,在当地向共同地区其他代理人广播其意见的传播期。在传播期和探索期之间,代理人应用决策机制,并可能改变意见。当使用多数决规则时,代理人将把意见切换到大多数邻居所喜欢的意见(Valentini et al. 2015)。当使用选举模型时,代理人会简单地随机选择邻居的意见(Valentini et al. 2014)。在这两种情况下,我们都考虑了邻域构成,它会根据代理人的运动动态变化,但具有固定的基数(cardinality),通常一个代理会有5个邻居左右。
图3.地点A(红色区域)、巢穴(白色区域)和地点b(蓝色区域)的模拟环境图示。实心圆代表处于传播状态的代理体,空圆圈代表处于探索状态的代理体。颜色代表选择的意见,红色表示选择 A,蓝色表示选择 b。图自 Valentini et al. 2018
多数决规则和选举模型之间的机制差异导致了不同的表现:前者比后者更快(图4a),但准确度更低(图4b)(这一结果更深刻的讨论参见 Valentini et al. 2018)。
图4. a 共识时间(对数尺度),b 模拟收敛于地点A的共识比例,c 在N=100的群体中初始偏好地点A代理数(如{10,11,...,90})的传递熵。问题配置:多数决规则∈{0.5,0.9},选举模型∈{0.5,0.9}。数字报告了使用LoESS回归计算平滑条件均值和置信区间估计,数据跨度为0.1。图自 Valentini et al 2018
在此基础上,我们可以解释应用决策规则(即多数决规则和选举模型)的代理体从周围邻居那里接收的信息流。通过将传递熵应用于从空间多体模拟中收集的数据实现这点(见图3),我们发现,与速度和准确度一样,代理体之间传输的信息取决于决策机制。随着集体达成共识的决策时间增加,从邻居传递到应用决策规则的某个焦点代理体的信息量也会增加,并随着最终结果的不确定性宽松调整。这个例子突出了信息结构和局域规则之间的关系,即使在集群行为最终可能导致类似决策的情况下。它强调信息结构不仅是要做出决策的属性,同样是以各组成部分之间相关结构来说明微观动态和宏观尺度特征关系的一个属性。
为进一步说明这一点,可以使用我们中一些人的最近工作,将泰诺胸蚁(temnothorax ants)纵队行进行为(tandem running behavior)的信息流结构与另外两种白蚁进行比较(Valentini et al. 2020),分别是精巢散白蚁(Reticulitermes speratus)和台湾乳白蚁(coptotermes formosanus)。通过聚焦泰诺胸蚁的纵队行进行为,使用传递熵来研究引导者和跟随者蚂蚁之间的信息流。纵队行进允许对潜在地点知情的蚂蚁(引导者)引导不知情的蚂蚁(追随者)了解其获得的位置。纵队行进过程中,引导者会进行小段直线运动,跟随者则会进行更多种不同运动(如当记忆地标的时候)(bowens et al. 2013),期间跟随者与引导者的身体接触会触发一系列重复动作。这种双向反馈(引导者引导跟随者跟随)被假设为实现了一种类似于人类教学的学习过程。与泰诺胸蚁不同,白蚁纵队行进的目的是确保新成对的雌雄白蚁夫妇在探索环境、寻找新巢址时不会失去对方。白蚁纵队行进的引导者并不知道潜在的巢址,因此并不试图将这些信息传递给跟随者。我们用传递熵分析了蚁群纵列对之间信息交流的幅度和方向,考虑了三种通信通道:运动、旋转和运动-旋转结合。根据相关信道的不同编码方案,对纵列对的空间连续轨迹进行了离散化处理:
运动信道:移动或不移动
旋转通道:顺时针或逆时针
运动-旋转通道:不动,顺时针移动或逆时针移动
我们发现,在胸蚁和白蚁的纵队行进中,引导者和追随者之间的信息交换存在以前未知的显着差异。在白蚁中,纵队行进的引导者操控着这对蚂蚁行为的所有方面(运动和旋转),而泰诺胸蚁却并非如此。与目前观点相反,我们的分析显示引导者和跟随者蚂蚁都扮演着不同的“领导“角色。从信息流的方向性看,虽然引导者指挥着蚁对的旋转模式,但决定蚁对运动模式的是跟随者。以这种方式,泰诺胸蚁的引导者-追随者组合通过不同的信道交换不同的信息,蚁对组合的交互作用为不同自由度的信息流编码了不同的方向。这是一个突出而明确的的例子,表明通过共享信息来进行群体决策是必要。因此对群体系统中信息流的严格量化有可能提供新的见解,揭示由于微观和宏观层面行为的微妙差异,新的计算类型(如决策)是如何从每个代理体的行动中产生的。