骑士书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

2014年,人工智能领域正处于深度学习的快速发展时期,但在训练深层神经网络时,仍存在一些无法绕过的核心难题,其中“梯度消失”和“梯度爆炸”问题尤其突出。

当马库斯和林枫的对话逐渐转向这些人工智能瓶颈时,他们自然聊到了这个话题。

对于人工智能涉及到的梯度消失和梯度爆炸这个问题,对于前世就从事人工智能方面工作的林枫来说,他自然是不陌生。

梯度消失和梯度爆炸是神经网络训练中常见的问题。

了解梯度消失和梯度爆炸首先要了解神经网络。

简单说,神经网络是一种模仿人脑工作原理的计算模型。

它由很多“神经元”组成,这些神经元分成多层,数据会从一层传到另一层,最终得到一个结果。

训练神经网络的过程就是不断调整这些神经元之间的“连接强度”,让网络的输出越来越接近我们想要的结果。

为了调整神经网络中的这些连接强度,我们需要用到一种叫“梯度”的东西。

简单来说,梯度就是用来指引我们“往哪里走”的方向,就像你爬山时要知道往哪边是上坡、哪边是下坡。

我们通过“梯度”来知道哪些参数需要调整,从而让网络的表现变得更好。

那“梯度消失”和“梯度爆炸”又是什么呢?

假设你在玩一个滑滑梯,当你站在滑梯的最高处,往下滑时,你能很快感受到速度在增加,因为坡度很大。

但是,如果滑到快要到底部的地方,坡度变得很小,你几乎就感觉不到滑动的速度了。

这里的“坡度”就像是“梯度”——当坡度变小,滑动的速度也变小。

在神经网络中,类似的事情也会发生。

如果我们给网络很多层,它们之间的梯度会越来越小,传到前面几层时,梯度几乎“消失”了。这就是“梯度消失”问题。

梯度太小,无法有效调整那些神经元的连接强度,网络的训练就会变得非常困难。

想象你在爬一个大山,山的坡度越来越平,最终你几乎感受不到自己在上升了,这时你很难再判断该怎么继续往上爬。

在神经网络里,梯度消失的问题就是这种感觉,网络不知道该如何继续改进。

而梯度爆炸又是另外的一个极端。

假设这次你站在一座非常陡的悬崖边,一不小心就滚下去了!

因为坡度太陡了,你的速度变得非常快,失控了。

在神经网络中,这种情况也被称为“梯度爆炸”

当梯度太大时,参数的调整会变得过于剧烈,网络的学习变得不稳定,甚至会导致训练失败。

这就像你在陡峭的悬崖边滑落,一下子失去了控制。

网络的参数变化过大,导致结果变得很不稳定,甚至完全错误。

概括地说:

梯度消失就像在一座越来越平的山坡上,梯度变得很小,神经网络不知道该怎么调整,进而学习变得很慢,甚至无法进步。

梯度爆炸就像从悬崖边滚下去,梯度变得很大,网络的学习变得过于剧烈,结果会非常不稳定,训练过程变得不可控。

这两个问题经常会出现在深层神经网络中。

而这也是马库斯所要倾诉的困扰。

“说起来,最近的研究还卡在了‘梯度消失’的问题上。”马库斯苦笑着说道,靠在沙发上,“我们在训练一些更深层次的神经网络时,发现模型一旦超过一定的深度,反向传播算法中的梯度会逐渐趋近于零,根本无法有效更新权重。深度越大,梯度就越容易消失,整个网络的学习效率大幅下降。”

马库斯知道林枫硕士是麻省理工学院的计算机硕士,因此也就全都用专业术语表述了。

对于这些林枫当然能听明白,非但能听明白,而且作为一个资深的人工智能从业人员。

林枫也清楚知道马库斯面临的难题。

林枫对AI的发展也有所了解,涉及到梯度问题在2014年是深度学习研究中的一个巨大挑战。

甚至可以说解决不了梯度问题就很难有真正的深度学习,也就不会有后来的人工智能成果的一系列井喷。

林枫心说,自己这是一不小心站在了技术发展的最前沿了吗?

不得不说,这种举手投足之间就能影响时代命运的感觉是真的无比美妙。

“梯度消失的问题一直存在,尤其是深层网络。梯度爆炸倒是相对好解决,但梯度消失会直接导致学习过程停滞不前。”林枫沉思片刻,补充道,“这不仅是你们实验室的问题,也是整个领域的瓶颈。反向传播的基本原理决定了,当信号在网络中层层传递时,梯度的变化会以指数级缩小。”

马库斯脑海中泛起了大大的问号,梯度爆炸问题好解决吗?

他怎么觉得梯度爆炸问题也挺麻烦的?

不过聊天本来就是求同存异,既然林同样认为梯度消失难以解决就够了。

马库斯也没纠结为什么林说梯度爆炸容易解决,而是继续就梯度消失发表观点说道:“是啊,哪怕有了ReLU(修正线性单元)激活函数的引入,虽然能在一定程度上减轻梯度消失,但对深层网络还是不够。”

林枫想了想,说道:“你们有考虑过改进网络结构吗?”

骑士书屋推荐阅读:穿书女配男主的小冤家重生之女配的美满人生退伍兵重生,混成大国合伙人一首天堂岛之歌,我吓懵全场观众美女杀手爱上我终于筑基了,尼玛他怎么就成仙了穿成科举文中炮灰小锦鲤千机妙探来自2030她喜欢女装后的我重回七零,作精小知青赖上我国运:综漫婚配,开局玩坏卡芙卡全球都市传说录:神秘与超自然异能觉醒,食材在梦中追杀我!乡村里的女人肥厨田园医农直播:被大熊猫赖上了怎么办?游戏制作:论玩家为何又爱又恨妙手神医:从融合AI开始傲娇青梅炒我鱿鱼,让她后悔吧!执掌神明权柄,我杀穿了黑雾医王出狱,出轨妻子跪求原谅不好!店长又双叒叕捡回兽耳娘啦反派少爷读档后的飒爽人生四合院我是傻柱的小叔四合院:我傻柱,开局迎娶冉秋叶纳尼?相亲对象竟然是我大债主?诡秘:我是演员特差生逆袭传奇阳哥彩妹婚后日常消失三年,青梅校花疯狂倒追我弑神令四合院:别劝了,在劝我就无敌了破烂小子的异时空收手吧神豪!别再让主播空降了无疆异世之异能世界8号医馆孟买:华夏第五直辖市家人们谁懂,这海军怎么是个混混开局获得仙君传承,我无敌了永夜降临,我为众魔之主异境逆袭:我命由我,不由天血契保安人在四合院逆天改命转职召唤师,开局十连SSS天赋顶流开局,制霸娱乐圈请,聆听我的声音富豪从西班牙开始
骑士书屋搜藏榜:[快穿]小受总是在死娱乐圈火爆天王战神赘婿:黄海平科技供应商重生:从叫错女同桌名字开始让你上大学,你偷偷混成首富薄先生的专属影后又美又娇带着修为回地球,全家随我飞升了我的女孩在灯火阑珊处医路人生:一位村医的奋斗之路重生嫡女归来最强赘婿霸宠甜甜圈:夜少,别乱撩我真不想当大明星地球online我开启世界大战港综:曹达华在我身边卧底特种兵:林老六竟然是狼牙总教官我家夫人今天听话了吗陈西峰商路笔记农门长嫂有空间抓鬼小农民农家俏寡妇:给五个孩子当娘都市极品保镖奶爸的超级农场穿书九零,大佬的炮灰前妻觉醒了穿成女配后我和权臣成亲了滑稽主播风雨兼程的逆袭路娱乐:让你介绍自己,你介绍家底重生之事事顺意限量婚宠:报告军长,我有了真千金断亲随军,禁欲大佬日日宠神界红包群撩妻1001式:席少,深度爱!影帝请你不要再吸我了喵公主殿下太妖孽黑道往事:从劳改犯到黑道传奇!重生之并蒂金花BOSS来袭:娇妻花式溺宠逆风三十岁重生高中校园:男神,撩一撩这个道士不靠谱村色撩人明朝大纨绔我向斐少撒个娇娇妻送上门:楚少请签收高中退学一年后,我被大学特招!修仙浪都市宝可梦供应商重生后,我娶了未来的县委书记
骑士书屋最新小说:铁柱,下山快活去吧!神临之后权力巅峰:反贪第一人民国地主沉浮存款永远一千,包养我你分期付款全民领主:我能无限鉴定词条!奇门医圣开局校花妈妈给我当秘书师傅和貌美如花徒弟们美母骑士:超神学院时空蔷薇篇我以青铜成就王者都市异能:失落与重拾的力量回穿,卖掉宝藏富可敌国吃上萝莉软饭的科学家只想摆烂第四天灾:鬼子的噩梦来了上门女婿我不当了,你闹啥娱乐:我一个雇佣兵你让我当演员七零之八个扶弟魔的弟弟重生了开局德械师,从伪军到独裁元首偷听心声:前妻她口是心非未来的我?是天降的白给美少女!如此当官带着民众奔小康校园异能联盟人在都市,系统在末世!用成仙骗我送外卖?逆位迷宫拿着易经去穿越都市僵尸王之万界风卷行戈真千金一睁眼,满级马甲爆虐人渣让你当黑手套,你给人去城市化求生:我的兵种叠加所有升级路线我在华夏镇诸天佛之眼娱乐:这个影帝有点儿帅神级预言家太监,厂督大人的走贩致富路这个学姐我曾见过的天哪,我居然是女票的男闺蜜血泪葫芦弯无敌反派:开局宗师巅峰四合院:签到助力科技腾飞民俗玄学让你发财让你运势旺开局孤儿,觉醒神级序列合家欢?重生1979:开局拒绝女知青!量子火锅才霸道初见红着脸,再见红了眼女朋友劈腿后,我在乡镇医院崛起仙脉觉醒赶山重生1980我能单手锁熊喉