骑士书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

2014年,人工智能领域正处于深度学习的快速发展时期,但在训练深层神经网络时,仍存在一些无法绕过的核心难题,其中“梯度消失”和“梯度爆炸”问题尤其突出。

当马库斯和林枫的对话逐渐转向这些人工智能瓶颈时,他们自然聊到了这个话题。

对于人工智能涉及到的梯度消失和梯度爆炸这个问题,对于前世就从事人工智能方面工作的林枫来说,他自然是不陌生。

梯度消失和梯度爆炸是神经网络训练中常见的问题。

了解梯度消失和梯度爆炸首先要了解神经网络。

简单说,神经网络是一种模仿人脑工作原理的计算模型。

它由很多“神经元”组成,这些神经元分成多层,数据会从一层传到另一层,最终得到一个结果。

训练神经网络的过程就是不断调整这些神经元之间的“连接强度”,让网络的输出越来越接近我们想要的结果。

为了调整神经网络中的这些连接强度,我们需要用到一种叫“梯度”的东西。

简单来说,梯度就是用来指引我们“往哪里走”的方向,就像你爬山时要知道往哪边是上坡、哪边是下坡。

我们通过“梯度”来知道哪些参数需要调整,从而让网络的表现变得更好。

那“梯度消失”和“梯度爆炸”又是什么呢?

假设你在玩一个滑滑梯,当你站在滑梯的最高处,往下滑时,你能很快感受到速度在增加,因为坡度很大。

但是,如果滑到快要到底部的地方,坡度变得很小,你几乎就感觉不到滑动的速度了。

这里的“坡度”就像是“梯度”——当坡度变小,滑动的速度也变小。

在神经网络中,类似的事情也会发生。

如果我们给网络很多层,它们之间的梯度会越来越小,传到前面几层时,梯度几乎“消失”了。这就是“梯度消失”问题。

梯度太小,无法有效调整那些神经元的连接强度,网络的训练就会变得非常困难。

想象你在爬一个大山,山的坡度越来越平,最终你几乎感受不到自己在上升了,这时你很难再判断该怎么继续往上爬。

在神经网络里,梯度消失的问题就是这种感觉,网络不知道该如何继续改进。

而梯度爆炸又是另外的一个极端。

假设这次你站在一座非常陡的悬崖边,一不小心就滚下去了!

因为坡度太陡了,你的速度变得非常快,失控了。

在神经网络中,这种情况也被称为“梯度爆炸”

当梯度太大时,参数的调整会变得过于剧烈,网络的学习变得不稳定,甚至会导致训练失败。

这就像你在陡峭的悬崖边滑落,一下子失去了控制。

网络的参数变化过大,导致结果变得很不稳定,甚至完全错误。

概括地说:

梯度消失就像在一座越来越平的山坡上,梯度变得很小,神经网络不知道该怎么调整,进而学习变得很慢,甚至无法进步。

梯度爆炸就像从悬崖边滚下去,梯度变得很大,网络的学习变得过于剧烈,结果会非常不稳定,训练过程变得不可控。

这两个问题经常会出现在深层神经网络中。

而这也是马库斯所要倾诉的困扰。

“说起来,最近的研究还卡在了‘梯度消失’的问题上。”马库斯苦笑着说道,靠在沙发上,“我们在训练一些更深层次的神经网络时,发现模型一旦超过一定的深度,反向传播算法中的梯度会逐渐趋近于零,根本无法有效更新权重。深度越大,梯度就越容易消失,整个网络的学习效率大幅下降。”

马库斯知道林枫硕士是麻省理工学院的计算机硕士,因此也就全都用专业术语表述了。

对于这些林枫当然能听明白,非但能听明白,而且作为一个资深的人工智能从业人员。

林枫也清楚知道马库斯面临的难题。

林枫对AI的发展也有所了解,涉及到梯度问题在2014年是深度学习研究中的一个巨大挑战。

甚至可以说解决不了梯度问题就很难有真正的深度学习,也就不会有后来的人工智能成果的一系列井喷。

林枫心说,自己这是一不小心站在了技术发展的最前沿了吗?

不得不说,这种举手投足之间就能影响时代命运的感觉是真的无比美妙。

“梯度消失的问题一直存在,尤其是深层网络。梯度爆炸倒是相对好解决,但梯度消失会直接导致学习过程停滞不前。”林枫沉思片刻,补充道,“这不仅是你们实验室的问题,也是整个领域的瓶颈。反向传播的基本原理决定了,当信号在网络中层层传递时,梯度的变化会以指数级缩小。”

马库斯脑海中泛起了大大的问号,梯度爆炸问题好解决吗?

他怎么觉得梯度爆炸问题也挺麻烦的?

不过聊天本来就是求同存异,既然林同样认为梯度消失难以解决就够了。

马库斯也没纠结为什么林说梯度爆炸容易解决,而是继续就梯度消失发表观点说道:“是啊,哪怕有了ReLU(修正线性单元)激活函数的引入,虽然能在一定程度上减轻梯度消失,但对深层网络还是不够。”

林枫想了想,说道:“你们有考虑过改进网络结构吗?”

骑士书屋推荐阅读:狂飙:开局润大嫂,杀安欣跟班:是嫂子先动的手!匹夫驾到四合院:众里寻她千百度穿到年代当姑奶奶都市:多子多福,女神孕气爆炸重生:红色仕途穿到年代后全家都是极品让你写济世,你主角卖印度神油?纵横股海,原来这才叫炒股自欢穿梭:电影世界女神有点多我天!他仙王重生,你可怜他?文娱:一首少年说,我被官方盛赞无限杀戮!高考落榜我于人间屠神四合院:我何雨柱,送贾张氏坐牢嫡华顶不住了!前夫天天把我摁墙上亲四合院:开局带着农场空间下乡[快穿]小受总是在死贵妃的现代生活索命贪欢:霸宠失忆甜妻团宠锦鲤她爆红了神医妖娆妃:帝尊慢点亲原神:神里绫华渐渐喜欢上了我美女退后,让我来!修罗神王:开局隐藏兵种阿修罗神医王妃带崽行凶了!让你参加武考,没让你杀穿域外星真千金用谐音梗改剧情虐哭主角团异能融合:我开创了超凡时代高手下山:我的倾城老婆欲戒娱乐圈:想当我老婆的女粉丝上亿小乖乖进门后,大叔夜夜归家四合院:从北平围城开始你惹他干吗,他是屠龙殿主!重生千金:大神,心尖宠异能特工携空间胎穿,被全家读心异能觉醒:我在异界打怪升级女帝每日一问,今天他没变强吧?女友警局入职,我天天送罪犯!反派:截胡师姐后,主角崩溃了甜妻在上:总统大人,劫个婚!重生78,抢黄金,拼手速!爱100分:帝少,宠不停新婚成劫,容少莫反悔穿越八零:帝少老公VS俏农媳从村官逆袭:权巅之路综视:家妻孟钰,我带孟德海狂飙
骑士书屋搜藏榜:[快穿]小受总是在死娱乐圈火爆天王科技供应商重生:从叫错女同桌名字开始让你上大学,你偷偷混成首富薄先生的专属影后又美又娇带着修为回地球,全家随我飞升了我的女孩在灯火阑珊处医路人生:一位村医的奋斗之路重生嫡女归来最强赘婿霸宠甜甜圈:夜少,别乱撩我真不想当大明星地球online我开启世界大战港综:曹达华在我身边卧底特种兵:林老六竟然是狼牙总教官我家夫人今天听话了吗陈西峰商路笔记农门长嫂有空间抓鬼小农民农家俏寡妇:给五个孩子当娘都市极品保镖奶爸的超级农场穿书九零,大佬的炮灰前妻觉醒了穿成女配后我和权臣成亲了滑稽主播娱乐:让你介绍自己,你介绍家底重生之事事顺意限量婚宠:报告军长,我有了神界红包群撩妻1001式:席少,深度爱!影帝请你不要再吸我了喵公主殿下太妖孽重生之并蒂金花BOSS来袭:娇妻花式溺宠逆风三十岁重生高中校园:男神,撩一撩这个道士不靠谱村色撩人明朝大纨绔我向斐少撒个娇娇妻送上门:楚少请签收高中退学一年后,我被大学特招!修仙浪都市宝可梦供应商一妃难求:冷傲帝王不经撩农媳诡异?感觉弗如系统校草的专宠:池少的1号甜心万古邪帝
骑士书屋最新小说:开局出轨被分手我逆天的人生穿越七十年代倒江湖一天一异火,十天屠神,百天无敌兵王闯职场,艳遇不断兵王开饭店,娇俏闻味来我有无限技能属性点,恶魔只能跪最弱御兽?反手进化神话品质神豪:还有一万亿,让我先花完高武:道德绑架?给你两拳!写小说能提现?我上传了黑客小说林峰的复仇与觉醒明星塌房?我都废墟了还塌?六零:单身汉梦缘知青女北风之恋让你打暑假工,你把地窟平推了?给你九个亿当神仙杨戬我不干从百事乐队走出来的唢呐神医狼陵王我的女友是宋雨琦初夏渲染秋凄凉文娱:从打造爆火女团开始封神全民转职:召唤丧尸穿越60年代的保定城觉醒钓鱼佬系统,成为万亿神豪东北往事,我叫林卫东胃癌晚期的我靠系统成为医学奇迹全民抽奖我全金,说我召唤师弱?融合了手机,我给自己充电修仙穿越六零改变家族命运魔法天才哥哥和他的工具人弟弟重生摆路边摊,城管催我快上班!她劈腿后,我植入了AI都市璀璨:邂逅星光高校难就业,影响我技校造航母?都市逐梦之旅途梦落少年时我是仙帝?我怎么不知道!武之信条恋曲悠扬离婚后前妻闺蜜疯狂追求我官场之顺势而为技能添词条,双职业奶妈井井有条她是未来最强,我是她的最强狼王风流神医:刚退伍,你就骗我同居修仙之都市无敌我刚觉醒系统,她爸让我滚远点?不朽正道冷清少女:我的青春永不完结校花从无绯闻,直到我们互换身体