骑士书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

虽说数学悖论大多是一些让人越想越糊涂的逻辑思维游戏,但也有不少悖论来自于实实在在的数学问题。在缺乏现代数学工具的年代,这些反直觉的结论和看似不可调和的矛盾让数学家们百思不得其解,那些最难解决的悖论甚至为数学新分支的开创带来了足够的动机。不太为人熟知的 cramer 悖论就是一个漂亮的例子。

在描述 cramer 悖论之前,让我们先来考虑一个简单的情况。

两条直线交于一点。

反过来,过一点可以做两条不同的直线。

事实上,过一点可以做无数条直线。

确定一条直线需要两个点才够。

一切都很正常。

现在,考虑平面上的两条三次曲线。

由于将两个二元三次方程联立求解,最多可以得到 9 组不同的解,因此两条三次曲线最多有 9 个交点。另外,三次曲线的一般形式为

x^3 + a·x^2·y + b·x·y^2 + c·y^3 + d·x^2 + e·x·y + f·y^2 + g·x + h·y + i = 0

这里面一共有 9 个未知系数。

代入曲线上的 9 组不同的(x, y),我们就能得出 9 个方程,解出这 9 个未知系数,恢复出这个三次曲线的原貌。

也就是说,平面上的 9 个点唯一地确定了一个三次曲线。

这次貌似就出问题了:“两条三次曲线交于 9 个点”和 “ 9 个点唯一地确定一条三次曲线”怎么可能同时成立呢?

既然这 9 个点是两条三次曲线所共有的,那它们究竟会“唯一地”确定出哪条曲线呢?

在没有线性代数的年代,这是一个令人匪夷所思的问题。

cramer 和 Euler 是同一时代的两位大数学家。

他们曾就代数曲线问题有过不少信件交流。

上面这个问题就是 1744 年 9 月 30 日 cramer 在给 Euler 的信中提出来的。

在信中, cramer 摆出了两个稍作思考便能看出显然成立的事实:一条三次曲线能用 9 个点唯一地确定下来,两条三次曲线可能产生出 9 个交点。

cramer 向 Euler 提出了自己的疑问:这两个结论怎么可能同时成立呢?

Euler 心中的疑问不比 cramer 的少。

接下来的几年里,他都在寻找这个矛盾产生的源头。

1748 年, Euler 发表了一篇题为 Sur une contradiction apparente dans la doctrine des lignes courbes (关于曲线规律中的一个明显的矛盾)的文章,尝试着解决这一难题。

正如大家所想,矛盾的源头就是, 9 个点不见得能唯一地确定出三次曲线的方程,因为不是每个点的位置都能给我们带来足够的信息。

Euler 试图向人们解释这样一件事情:曲线上的 9 个点虽然给出了 9 个不同的方程,但有时它们并不能唯一地解出那 9 个未知数,因为有些方程是废的。

在没有线性代数的年代,解释这件事情并不容易。

Euler 举了一个最简单的例子:方程组

3x ? 2y = 5

4y = 6x ? 10

表面上存在唯一解,但事实上两个方程的本质相同——第一个方程乘以 2 再移项后就直接变成第二个方程了。

换句话说,后一个方程并没有给我们带来新的信息,有它没它都一样。

当然,这只是一个最为简单的例子。

在当时,真正让人大开眼界的则是 Euler 文中给出的三元一次方程组:

2x ? 3y + 5z = 8

3x ? 5y + 7z = 9

x ? y + 3z = 7

这个方程组也没有唯一解,原因就很隐蔽了:后两个方程之和其实是第一个方程的两倍,换句话说第一个方程本来就能由另外两个方程推出来。

因此,整个方程组本质上只有两个不同的方程,它们不足以确定出三个未知数来。

Euler 还给出了一个四元一次方程组的例子,向人们展示了更加复杂的情况。

类似地, 9 个九元一次方程当然也会因为出现重复信息而不存在唯一解,不过具体情况几乎无法预料:很可能方程(1)就是方程(2)和方程(5)的差的多少多少倍,也有可能方程(7)和(9)的差恰是前三个方程的和。

究竟什么叫做一个方程“提供了新的信息”,用什么来衡量一个方程组里的信息量,怎样的方程组才会有唯一解?

Euler 承认,“要想给出一个一般情况下的公式是很困难的”。

此时大家或许能体会到, Euler 提出的这些遗留问题太具启发性了,当时的数学研究者们看到之后必然是浑身血液沸腾。

包括 cramer 在内的数学家们沿着 Euler 的思路继续想下去,一个强大的数学新工具——线性代数——逐渐开始成型。

没错,这个 cramer 正是后来提出线性代数一大基本定理—— cramer 法则——的那个人。

骑士书屋推荐阅读:全能音师LOL:你什么冠军?我爆杀冠军网游:开局获得时崎狂三模板被游戏化的世界全球穿越:开局觉醒SSS天赋从网王开始的超能力网球传奇岁月:我的开挂人生我穿越进了修仙游戏世界网游之仙途觉醒:自带顶级功法斗罗:修改一个字,全员人设崩了国运:我比别人多亿点点全属性温宁厉北琛许逸第一婚宠厉爷娇妻太会撩全文免费阅读大结局开局百万属性,我的天赋会升级穿越者公敌都市之纵意花丛全球降临:浮空岛无限战争网游之海盗王网游之剑气无双梦幻西游:我有神级卡牌系统惊!掉进了无限生存游戏我成神了王者:念念台词就无敌全民:我,禁忌法师,一招灭世全民:弓神!开局无限火力抵万军全民十连抽,我能看到抽奖概率屍叔王者荣耀:混蛋,别撩我LOL:我真没想抢你首发网游:开局一个小乞丐一个白色宝箱,你开出了全世界?王者荣耀:竞技男神,求放过最终猎手55超人修仙:我一现世就是神明!我成了野猪人一剑天途网游:凶猛召唤公路求生,我能入侵修改系统末世网游:开局唯一超神级天赋NBA:狂暴型中锋联盟:开局接手IG万界红包群传奇兄弟横推末日荣耀王者之超能直播间神级天赋,属性高亿点很合理吧!让你转职,你修仙?邪神的自我养成计划求生:开局一只猫,装备全靠捡倚天:重生宋青书,完美开局超神魔咒师海岛,全民垂钓,我独获史诗天赋
骑士书屋搜藏榜:轮回乐园之投影三枪追魂穿越者公敌领主降临:从选择身份开始超神:四舍五入我老婆是三王宅在游戏当大侠重生八零完美逆袭我是巅峰BOSS七十一变[综]都市之纵意花丛丧尸末世,但是在大唐NBA:爱发推特的我统治了联盟游戏制作从负债千万开始全球降临:浮空岛无限战争清歌煮酒林小北的游戏赚钱生涯从黑袍开始成为究极生物全民大航海,我开局一条幽灵船卢米安莉雅的小说免费阅读眼睛一闭一睁,无限我来啦九州天王叶凌天周雪青夏初见易楠平全文免费阅读完整版LCK的中国外援最后的地球战神怪猎聊天群DNF圣职者转生异界大神捂紧你的小马甲网游之海盗王木叶有妖气全球游戏:无敌氪金系统斗罗:被读心后成了武魂殿团宠墨门飞甲网游:我的道具能具现斗破之我让魂族从了良网游之剑气无双美女总裁的护花保镖李南神话天书战龙归来林北逆战之大枪神我叫欧楚良斗破:家祖玄帝萧玄LOL系统:从扮演刀妹开始墨迹诸天极品豪婿最强幸运主播无敌游戏:从一名弓箭手开始崛起反派游戏(GL网游)2048奥运会梦幻西游:我有神级卡牌系统电竞金手指
骑士书屋最新小说:SS级天赋,代价是变成女生?领主:我愿建立一方乐土足球教练,我选择国足绽放于冬网游三国:从南海开始,虎视天下双职业,无限重置,阁下如何应对第四天灾:玩家对抗玩的就是真实全民巨鱼求生:我能听到巨鱼心声求生试炼:从猫女开始进化1984,我在公牛队当老板电竞风运起,赛场初亮剑吊车尾我,竟成了求生游戏的大佬无止的界限开局获得暴击系统谁敢跟我比物资一上场就五杀!你管这叫新人?始于颜值,陷于温柔!【人外】别问,双A才是真绝色NBA疯狂控卫的逆袭NPC觉醒后,疯批领主放肆宠!收集球衣,我只是为了继承球技逆水寒手游:绑定系统后暴富了带S级球娘美少女举起世界杯网游之近战弓箭手NBA新神降临全民修真从完美游戏崛起我踢前锋,老爹是老板电竞曙光绝地枪王菜鸟小凡的游戏生涯海上开局两脚地,别人求生我求神全球高武我的战力亿点点NBA:天赋拉满,带着卡特夺冠NBA:从神级签到系统开始无敌网游:每天获得士兵不过分吧网游之异世入侵我的弟子遍布全球木筏求生,重生把前男友喂鲨鱼我在游戏里当造物主网游,我的运气有亿点点好重生休夫,禁欲太子夜夜逼嫁东宫求生:开局战五渣,全靠宠物带躺啊大海求生:从一座破铁屋开始网游:我能给召唤物融合材料生存游戏,别人啃草她吃肉综漫:野原新之助,要被柴刀了呦真实引擎我在NBA偷戒指NBA:最强锋线,重塑绿军荣耀网游:诸位,我只想当个好人足球:我成了凯恩的队友?