物理由麦克斯韦方程组出发,统一四个力。
前三个好说,引力不行。
杨-米尔斯理论描述的由强力为主要,但引力不行。
爱因斯坦说,尝试对称性。以此推数学方程。
广义相对论发现统一场方程,可以借鉴这个。
从洛伦兹不变性导出了狭义相对论,从广义坐标不变性导出了广义相对论,现在我们试图统一引力和电磁力,那么,有一个问题就会很自然地被提上日程:究竟什么样的一种对称性会导出电磁理论呢?
诺特定理告诉我们对称性跟守恒定律是一一对应的,我现在不是要找导出电磁理论的对称性么?那么我就去看看电磁理论里有什么守恒定律呗,最好还是电磁理论里特有的。
说到电磁理论里特有的守恒定律,那肯定就是电荷守恒啊。电荷肯定是只有电磁学才有的东西,而且电荷守恒定律又是这么明显,不管是不是它,它肯定是嫌疑最大的那个,必须抓起来严刑拷问,看看跟它私通的对称性到底是什么。
在外尔的严刑逼供下,电荷守恒招了:跟电荷守恒相对应的对称性是波函数的相位不变性,(在量子力学里粒子的状态是用波函数来描述的,既然波那肯定就有相位),但是由于历史原因,这个相位不变性我们一直称为规范不变性,也叫规范对称性。
这个相位不变性,或者说规范不变性,我们怎么理解呢?为什么麦克斯韦的电磁理论里会有规范不变性呢?如果从公式里看就非常的简单,就是我给它这里做了一个相位变换,它另一个地方就产生了一个相反的相位,总体上刚好给抵消了;如果从直觉上去感觉,你可以想想,在量子力学里,波函数的模的平方代表在这里发现该粒子的概率,你一个波函数的相位不论怎么变,它的模的平方是不会变的啊。如果你还想继续深挖,我推荐你去看一看格里菲斯的《粒子物理导论》(在公众号回复“粒子物理导论”可以获取这本书的电子版),他在第十章里专门用了一章来讨论规范理论,而且很通俗。
总的来说就是:规范不变性导致电荷守恒。
外尔接着发现了一件真正让人吃惊的事:我们上面说规范不变性导致电荷守恒,这里说的规范不变性指的是整体规范不变性,但是外尔发现如果我们要求这个规范不变性是局域的,那么我们就不得不包括电磁场。
1941年,泡利发表了一篇论文,他在论文里严格的证明了:U(1)群整体规范对称性对应电荷守恒,它的局域规范对称性产生电磁理论,甚至可以直接从它推导出麦克斯韦方程组。U(1)群是群论里的一种群的名字,叫酉群(unitary group),或者幺正群,数字1表示这是1阶酉群,我们现在只需要知道对称性在数学上就是用群论来描述,而且通常不同的理论对应不同的群(这里电磁理论就对应U(1)群)就行了。
决定电磁理论的对称性,它就是U(1)群的局域规范对称性。U(1)群和规范对称我前面都解释了。